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1 Introduction
As the COVID-19 pandemic continues, we are reminded and encouraged to stay six feet apart
from others as to not contract the disease from infected persons. This motivated us to explore
how contact network modeling can begin to give us an idea at how a disease spreads throughout a
population.

1.1 Creating A Network Graph
We can model social networks through a mathematical framework of a network where we have a
graph G = (V,E) where G consists of V , a set of vertices (also called nodes) and E, a set of edges
(also called links). In our case, nodes represent different individuals and edges can be thought of
as the interaction or connection between two individuals.

1.2 Network Models
There are several ways to construct a graph with various characteristics and shapes and for our
purposes, we investigate the spread of diseases on three network models to simulate the various
networks we might encounter in real life.

• Erdos Renyi Random Graph: The classical random graph model popularized by Erdos
and Renyi (1959) starts with a collection of graphs with the same given number of nodes
and edges and gives each graph equal probability. In mathematical terms, we can define a
collection of graphs as GNv ,Ne of all G = (V,E) with the same given number of nodes and
edges. Then we assign probability P(G) =

(
N
Ne

)−1 for each G ∈ GNv ,Ne where N =
(
Nv

2

)
is the

total number of distinct pairs (Kolaczyk 2014).

• Watts-Strogatz Small-World : The small world network structure identified by Wattz and
Strogatz (1998) aims to create networks with high clustering and low average path lengths.
They were motivated by their observations of these types of networks in the real world that
had high clustering but low distance between nodes. To create a small world, we begin by
starting with the graph in a lattice structure made of n vertices and connect them to r of its
neighbors. Then we “rewire” the edges by moving one end of each edge to another node with
probability p (Kolaczyk 2014).

• Preferential Attachment Model: Another type of model we want to explore is the prefer-
ential attachment model created by Barabasi-Albert (1999) which embodies the idea of “the
rich get richer”. This type of model works like this: we start with an initial graph G(0) of N (0)
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vertices and N
(0)
e edges. Then at each step t = 1, 2, ..., the current graph is changed to create

a new graph by adding a new vertex with some degree m and the m edges are attached to m
different vertices of the current graph. The probability of the new vertex being connected to
an old vertex v is given by dv∑

v′∈V dv′
. We can see that there is a preference towards those with

higher degrees and after t steps, we will start to see vertices with very high degrees emerging
(Kolaczyk 2014).

• Zach’s Karate Club: While this is mostly a simulation study, we also wanted to explore
an actual network with real individuals and relationships between individuals. This network
depicts the interactions between members of karate clubs observed by Wayne W. Zachary
(1977).

1.3 SIR Model
With these various network topologies, we are curious if the spread of diseases changes depending
on the structure of the network and to model disease spread, we use a basic SIR model which
is a compartmental model that places individuals into one of three compartments: susceptible,
infected, or recovered. However, we won’t be looking at the mathematical version but relying
on the algorithm implemented in the python package (EoN) for the textbook “Mathematics of
Epidemics on Networks” by Kiss, Miller, and Simon (2017).

This algorithm simulates continuous time SIR epidemics in static networks with transmission rates
τ and recovery rates γ. This implementation uses a priority queue Q where events are stored and
the first is executed. If the event is a transmission and the individual is susceptible, then they
become infected. Their recovery is inserted into Q and transmission to incidental nodes may be
added. If the event is recovery, the node then recovers. A picture of the algorithm from the book
is shown below.

In our SIR model, we chose our tau = 0.056 and gamma = 0.0455 based on the paper “Estimation
of SIR model’s parameters of COVID-19 in Algeria” by Dilip and Lounis (2020). Moreover, we
begin each infection by targeting the node with the highest degree centrality to see how it spreads
when we might have a “super spreader”.
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1.4 Network Characteristics
For our three networks, they are randomly generated with a pre-determined seed. Each network
consists of 500 nodes and the choice for number of edges was chosen arbitrary to the extent that
we are putting in enough edges such that the overall density of the network is approximately 10%.

In the figure below, we see each network shares very similar network characteristics except for the
clustering coefficient (frequency of connected triples to close and form triangles).

Attribute Erdos-Renyi Random Watts-Strogatz Small-World Barabasi-Albert Preferential
0 Number of Nodes 500 500 500
1 Number of Edges 12515 12500 12771
2 Density 0.100321 0.1002 0.102373
3 Average Degree 25.03 25 25.542
4 Average Path Length 1.90549 1.91284 1.91346
5 Transitivity 0.0997073 0.162317 0.181909
6 Clustering Coefficient 0.0999317 0.163431 0.186897
7 Is fully connected True True True
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Attribute Karate Club
0 Number of Nodes 34
1 Number of Edges 78
2 Density 0.139037
3 Average Degree 2.29412
4 Average Path Length 2.4082
5 Transitivity 0.255682
6 Clustering Coefficient 0.570638
7 Is fully connected True

2 Results
2.1 Random Graph
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Running 500 simulations, we see that nearly all the nodes get infected at some point given our
parameters in the SIR model. Nearly all nodes get infected by around 5-7 days marks. We also
notice that the results are also pretty consistent throughout the 500 simulations as indicated by

the thick bands.

2.2 Small World
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In the small-world graph, we get really similar results to the random graph where nearly all the
nodes get infected at some point given our parameters in the SIR model and it is around the 5-7

days mark. We also notice that the results are also pretty consistent throughout the 500
simulations as indicated by the thick bands.

2.3 Preferential Attachment Graph
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In the preferential attachment graph, the results are also similar to both the random and the
small-world. We see this exponential rise in cases where nearly every node gets infected at some

point. Given these networks have very similar characteristics, tuning some of the network
parameters slightly might see more changes.

2.4 Karate Club
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In the karate club, due to there being less nodes, the variation between simulations seems way
larger. We still notice a really quick rise then slow dip in infections as seen in the previous one

but the band is not as tight as the others.

3 Discussion
In the three simulated networks, we see very similar trends in the rise of infected nodes. They all

exhibit exponential rises, peaking around days 5-7 and nearly infecting the entire network
population of 500 nodes. Moreover, the graphs also display a level of consistency when running

through the 500 simulations as seen by the thick bands. Whereas in the karate club network
which is a much smaller network, we see more variability in the simulations. These results might

be explained by the fact that the networks as shown above had really similar characteristics
besides the clustering coefficient.

3.1 Limitations
There were several limitations to this simulation study, from network formation to model

implementation. The three networks we looked at are generally not representative of real social
networks although small-world and preferential attachment may try to replicate certain aspects of
real world networks. Furthermore, we also only considered static networks while social networks

are dynamic and relationships/contact often form or dissolve over time.

In addition, the SIR model is a rudimentary model that only considers three possibilities and
places unrealistic assumptions such as assuming infections happen instantaneously and recovery
rates are independent of time. We also didn’t consider stochastic effects as the SIR model is a

deterministic one. Given more time, exploring dynamic networks and stochastic models would be
the next step in modeling infectious diseases.

3.2 Conclusion
We did not see noticeable differences in SIR models on the three simulated networks which raises
the question of what network parameters matter the most in the spread of diseases. In a future

simulation study, we would like to see how tuning various parameters affect the spread in
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combination with various network topologies and using more complex models that considers
vaccination rates or the ability for people to get reinfected again. While that remains a problem

for another day, our study shows the usefulness of networks in modeling diseases and can allow us
to have a better understanding of infection diseases and could serve as a useful tool to inform

policy and public health decisions.
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